

NSAT-2023

CLASS – IX (Mental Ability, Mathematics & Science)

(Class IX Moving to X)

NARAYANA SCHOLASTIC APTITUDE TEST (NSAT)

SAMPLE PAPER

Time: 1:00 Hr.

Maximum marks: 160

IMPORTANT INSTRUCTIONS:

- 1. The test Booklet consists of 40 questions. The maximum marks are 160.
- 2. There are five parts in the question paper of MAT (Q. No. 1 to 8) Mathematics (Q. No. 9 to 19), Physics (Q. No. 20 to 26), Chemistry (Q. No. 27 to 33) & Biology (Q. No. 34 to 40) having 40 questions. Each question is allotted +4 (four) marks for each correct response & -1 for each incorrect answer
- Mark only one correct answer out of four alternatives. 3.
- 4. Use Blue/Black Ball Point Pen only for writing particulars/marking.
- 5. Use of Calculator is not allowed.
- 6. Dark the circle in the space provided only.
- Use of white fluid or any other material which damage the answer sheet, is not permissible on the 7. Answer Sheet.

TO BE FILLED IN CAPITAL LETTERS

NAME OF THE STUDENT :

FATHER'S NAME : _____

CONTACT NUMBERS: ______SCHOOL NAME : _____

ROLL NO. :______TEST CENTRE : _____

I have read all the instructions and shall abide by them

I have verified all the information filled in by the Candidate

Signature of the Candidate

Signature of the Invigilator

Class IX TO X

EDUCATION IS INTEGRAL FOR GROWTH AND DEVELOPMENT

Education is integral for the growth and development of an individual. The expectation from an educational institute is always about making the society better for all and to bring out one's true Potential in the service of mankind.

At Narayana, we believe that a student's education is complete only when we are able to contribute towards his/her overall development besides imparting knowledge based and career oriented training.

With an aim to provide top of the league training to students to excel in every sphere of their lives, Narayana Group has been focusing on result oriented inputs.

Narayana's courses have been designed to cater to all the needs of the aspirants to help them excel in various competitive as well as Board examinations. Innovative strategies and techniques adopted in our centres keep our students abreast of the ever-changing pattern of top level Engineering/Medical Entrance Exams. As a result, Narayana's timetested learning formulae are percolating to far-flung corners of India to benefit students from all backgrounds.

"Footprints on the sands of time are not made by sitting down". Today we rededicate the last 4 decades of our success to your dreams. I wish all our students a very successful academic year ahead.

Dr. P. NARAYANA Founder, Narayana Group

NARAYANA IIT/NEET/FOUNDATIONS ACADEMY

(;)

0

(1:

(1)

fe.

NSAT – 2023

6. Select a suitable figure from the four alternatives that would complete the figure matrix.

7. Find the missing number from the options, if a certain rule is followed either row-wise or columnwise.

	NSAT – 2023			Class IX TO X
13.	Given that equation $2b$ (A) -1	(x+6) = 4x + 1 has no (B) 2	o solution $b = ?$ (C) 3	(D) 4
14.	Which of the following	g rational numbers have	e terminating decimal ex	pansion?
	(i) $\frac{17}{8}$	(ii) $\frac{64}{455}$	(iii) $\frac{15}{1600}$	
	(iv) $\frac{13}{2127}$	(v) $\frac{129}{2^2 - 5^2 - 5^{17}}$	(vi) $\frac{987}{10700}$	
	(A) only iv and vi	$2^2 \times 5^2 \times 7^{17}$	(B) only ii and v	
	(C) only i, iii, iv and vi	i	(D) only i, iii and iv	
15.	If $\frac{x}{y+z} = a; \frac{y}{z+x} = b;$	$\frac{z}{x+y} = c; then \frac{1}{1+a} + \frac{1}{1+a}$	$\frac{1}{+b} + \frac{1}{1+c}$ is equal to	
	(a) $\mathbf{a} + \mathbf{b} + \mathbf{c}$	(B) 3	(C) 2	(D) 1
16.	What is the value of $\frac{a}{a}$	$\frac{x(y-z)}{y(x-z)} \div \left(\frac{a^y}{x}\right)^z$		
	(A) 1	$(B) a^{x}$	(C) a ^{xy}	(D) a^{xyz} .
17	The value of $6^n \times 2^{2n}$	$\times 3^{3n}$ is equal to		
1/.	(A) 1 $30^n \times 3^{2n}$	$\times 2^{3n}$ is equal to (B) 35^n	$(C) (0 3)^{n}$	(D) 3^5
18.	In figure. PS is the bise	AVANA SCHOLAS ector of $\angle OPR$ and PT	\perp OR. Here \angle POR = 70	\swarrow^{0} and $\angle PRO = 20^{\circ}$. Then
	$\angle TPS$ is equal to	PIRE • ASSE	SS • ACHIE	VE
		P		
			R R	
	(A) 20°	(B) 25^0	(C) 15^0	(D) 30° .
19.	Solve the following sy	stem of equations $\frac{1}{2x}$	$-\frac{1}{y} = -1$ and $\frac{1}{x} + \frac{1}{2y} = 8$,	$x \neq 0, y \neq 0$
(.	A) $x = \frac{1}{6}, y = \frac{1}{4}$	(B) $x = \frac{3}{4}, y = \frac{1}{7}$	(C) $x = \frac{2}{3}, y = \frac{3}{2}$	(D) $x = \frac{9}{7}, y = \frac{7}{5}$
		Space for rou	gh work	

 20. A ball is thrown upwards. It returns to ground describing a parabolic path. Which of the following remains constant? (A) speed of the ball (B) kinetic energy of the ball (C) vertical component of velocity. 21. A body starts from rest and is uniformly accelerated for 30 s. The distance travelled in the first 10s is x₁ next 10 s is x₂ and the last 10 s is x₃. Then x₁ : x₂ : x₃ is the same as (A) 1 : 2 : 4 (B) 1 : 2 : 5 (C) 1 : 3 : 5 (D) 1 : 3 : 9 22. The ratio of SI units to CGs units of G is (A) 10³ (B) 10² (C) 10² (D) 10³ 23. If a net force of 7 N was constantly applied on 400 g object at rest, how long will it take to raise its velocity to 80 m/s? (A) 0 s (B) 2.23 s (C) 3.47 s (B) 2.23 s 24. A car moving along a straight road with a uniform acceleration. It passes through two points and Q separated by a distance with velocity 30 km/hr and 40 km/hr respectively. The velocity the car midway between P and Q is (A) 33.3 Km/hr (B) 20.5 km / hr (C) 25.5 km / hr (D) 35 km/hr 25. A cricket ball of mass of 150 g is moving with a velocity of 12 m/s and is hit by a bat so that the ball is turned back with a velocity of 20 m/s. If the duration of contact between the ball and bat 0.01 s, find the average force exerted on the ball by the bat. (A) 480 N (B) 280 N (C) -1 (D) Infinity 		NSAT – 2023	Class IX TO X
 20. A ball is thrown upwards. It returns to ground describing a parabolic path. Which of t following remains constant? (A) speed of the ball (B) kinetic energy of the ball (C) vertical component of velocity. 21. A body starts from rest and is uniformly accelerated for 30 s. The distance travelled in the first 10s is x₁ next 10 s is x₂ and the last 10 s is x₃. Then x₁ : x₂ : x₃ is the same as (A) 1 : 2 : 4 (B) 1 : 2 : 5 (C) 1 : 3 : 5 (D) 1 : 3 : 9 22. The ratio of S1 units to CGs units of G is (A) 0³ (B) 10² (D) 4 : 3 : 9 23. If a net force of 7 N was constantly applied on 400 g object at rest, how long will it take to raise its velocity to 80 m/s? (A) 0 s (C) 3.47 s (B) 2.23 s 24. A car moving along a straight road with a uniform acceleration. It passes through two points and Q separated by a distance with velocity 30 km/hr and 40 km/hr respectively. The velocity the car midway between P and Q is (A) 33.3 Km/hr (B) 20√3 km/hr (C) 25√2 km/hr (D) 460 N 25. A cricket ball of mass of 150 g is moving with a velocity of 12 m/s and is hit by a bat so that the ball is turned back with a velocity of 20 m/s. If the duration of contact between the ball and bat 0.01 s, find the average force exerted on the ball by the bat. (A) 1 (B) 0 (C) -1 (D) 160 N 		PHYSICS	
 (D) holy starts from rest and is uniformly accelerated for 30 s. The distance travelled in the first 10s is x₁, next 10 s is x₂ and the last 10 s is x₃. Then x₁ : x₂ : x₃ is the same as (A) 1 : 2 : 4 (B) 1 : 2 : 5 (C) 1 : 3 : 5 (D) 1 : 3 : 9 22. The ratio of SI units to CGs units of G is (A) 10³ (B) 10² (C) 10² (D) 10³ 23. If a net force of 7 N was constantly applied on 400 g object at rest, how long will it take to raise its velocity to 80 m/s? (A) 0 s (B) 2.23 s (C) 3.47 s (D) 4.57 s 24. A car moving along a straight road with a uniform acceleration. It passes through two points and Q separated by a distance with velocity 30 km/hr and 40 km/hr respectively. The velocity the car midway between P and Q is (A) 33.3 Km/hr (B) 20√3 km/hr (C) 25√2 km/hr (D) 35 km/hr 25. A cricket ball of mass of 150 g is moving with a velocity of 12 m/s and is hit by a bat so that the ball is turned back with a velocity of 20 m/s. If the duration of contact between the ball and bat 0.01 s, find the average force exerted on the ball by the bat. (A) 480 N (B) 280 N (C) -1 (D) Infinity 	20.	 A ball is thrown upwards. It returns to ground describing a parabolic following remains constant? (A) speed of the ball (B) kinetic energy of the ball (C) vertical component of velocity (D) horizontal component of velocity 	e path. Which of the
 22. The ratio of SI units to CGs units of G is (A) 10³ (C) 10² (D) 10³ 23. If a net force of 7 N was constantly applied on 400 g object at rest, how long will it take to raise its velocity to 80 m/s? (A) 0 s (C) 3.47 s (D) 4.57 s 24. A car moving along a straight road with a uniform acceleration. It passes through two points and Q separated by a distance with velocity 30 km/hr and 40 km/hr respectively. The velocity the car midway between P and Q is (A) 33.3 Km/hr (B) 20√3 km / hr (C) 25√2 km / hr (D) 35 km/hr 25. A cricket ball of mass of 150 g is moving with a velocity of 12 m/s and is hit by a bat so that the ball is turned back with a velocity of 20 m/s. If the duration of contact between the ball and bat 0.01 s, find the average force exerted on the ball by the bat. (A) 480 N (B) 280 N (C) 400 N (D) 460 N 26. The force of gravitational between two bodies can be zero if the separation between the bodies becomes. (A) 1 (B) 0 (C) -1 (D) Infinity 	21.	A body starts from rest and is uniformly accelerated for 30 s. The distance t 10s is x_1 , next 10 s is x_2 and the last 10 s is x_3 . Then $x_1 : x_2 : x_3$ is the same a (A) 1:2:4 (B) 1:2:5 (C) 1:3:5 (D) 1:3:9	ravelled in the first as
 23. If a net force of 7 N was constantly applied on 400 g object at rest, how long will it take to raise its velocity to 80 m/s? (A) 0 s (B) 2.23 s (C) 3.47 s (D) 4.57 s 24. A car moving along a straight road with a uniform acceleration. It passes through two points and Q separated by a distance with velocity 30 km/hr and 40 km/hr respectively. The velocity the car midway between P and Q is (A) 33.3 Km/hr (B) 20√3 km / hr (C) 25√2 km / hr (D) 35 km/hr 25. A cricket ball of mass of 150 g is moving with a velocity of 12 m/s and is hit by a bat so that the ball is turned back with a velocity of 20 m/s. If the duration of contact between the ball and bat 0.01 s, find the average force exerted on the ball by the bat. (A) 480 N (B) 280 N (C) 400 N (D) 460 N 26. The force of gravitational between two bodies can be zero if the separation between the bodies becomes. (A) 1 (B) 0 (C) -1 (D) Infinity 	22.	The ratio of SI units to CGs units of G is (A) 10^3 (B) 10^2 (D) 10^{-3}	I
 24. A car moving along a straight road with a uniform acceleration. It passes through two points and Q separated by a distance with velocity 30 km/hr and 40 km/hr respectively. The velocity the car midway between P and Q is (A) 33.3 Km/hr (B) 20√3 km/hr (C) 25√2 km/hr (D) 35 km/hr 25. A cricket ball of mass of 150 g is moving with a velocity of 12 m/s and is hit by a bat so that the ball is turned back with a velocity of 20 m/s. If the duration of contact between the ball and bat 0.01 s, find the average force exerted on the ball by the bat. (A) 480 N (B) 280 N (C) 400 N (D) 460 N 26. The force of gravitational between two bodies can be zero if the separation between the bodies becomes. (A) 1 (B) 0 (C) -1 (D) Infinity 	23.	If a net force of 7 N was constantly applied on 400 g object at rest, how lonits velocity to 80 m/s?(B) 2.23 s(A) 0 s(B) 2.23 s(C) 3.47 s(D) 4.57 s	g will it take to raise
 25. A cricket ball of mass of 150 g is moving with a velocity of 12 m/s and is hit by a bat so that the ball is turned back with a velocity of 20 m/s. If the duration of contact between the ball and bat 0.01 s, find the average force exerted on the ball by the bat. (A) 480 N (B) 280 N (C) 400 N (D) 460 N 26. The force of gravitational between two bodies can be zero if the separation between the bodies becomes. (A) 1 (B) 0 (C) -1 (D) Infinity 	24.	A car moving along a straight road with a uniform acceleration. It passes and Q separated by a distance with velocity 30 km/hr and 40 km/hr respect the car midway between P and Q is (A) 33.3 Km/hr (B) $20\sqrt{3}$ km/hr (C) $25\sqrt{2}$ km/hr (D) 35 km/hr	through two points P tively. The velocity of cm/hr
 26. The force of gravitational between two bodies can be zero if the separation between the bodies becomes. (A) 1 (B) 0 (C) -1 (D) Infinity 	25.	A cricket ball of mass of 150 g is moving with a velocity of 12 m/s and is hball is turned back with a velocity of 20 m/s. If the duration of contact betw0.01 s, find the average force exerted on the ball by the bat.(A) 480 N(B) 280 N(C) 400 N	it by a bat so that the een the ball and bat is 0) 460 N
(A) 1 (B) 0 (C) -1 (D) Infinity Space for rough work	26.	The force of gravitational between two bodies can be zero if the separation becomes.	between the bodies
Space for rough work		(A) I (B) 0 (C) -1 (E	9) Infinity
		Space for rough work	
NARAYANA IIT/NEET/FOUNDATIONS ACADEMY	NARA	AYANA IIT/NEET/FOUNDATIONS ACADEMY	7

	CHEMISTRY	
7.	Temperature at which Fahrenheit scale shows - 40° F? (A) 4.44° C (B) 40° C (C) - 4.44	^{0}C (D) – 40 ^{0}C
8.	What is the total charge if 2.8 gm sample of Nitride ion is ta(A) 28905.6 coulomb(B) 115622(C) 57811.2 coulomb(D) 86716.	ken. 2.4 coulomb 8 coulomb
9.	A sample of sea water is taken which contain 5.85% NaCl, will be mol per litre concentration of Cl ⁻ ion if density of sa (A) 32 (B) 12 (C) 20	19% MgCl ₂ and 22.35% KCl. Wha mple is 2 gm/ml. (D) 16
0.	One mole of CO_2 means : (A) 44 g of CO_2 (C) 22.4 L at STP (B) $6.022 \times$ (D) All of the second se	10^{23} molecules of CO ₂ .
31.	1.5 moles of oxygen atoms are present in (A) 0.5 moles of BaCO ₃ (B) 1 mole (C) 2 moles of BaCO ₃ (D) 0.25 m	of BaCO ₃ oles of BaCO ₃ .
32.	Which of the following is the correct set of apparatus for fra (A) Round bottomed flask, thermometer, water condenser a (B) Round bottomed flask, thermometer, air condenser and (C) Round bottomed flask, thermometer, fractionating colur (D) Round bottomed flask, thermometer, fractionating colur	actional distillation? nd beaker beaker nn, water condenser and flask nn, air condenser and flask.
33.	Using magnetic separation we can separate mixture of	
	(A) Ni and Pb(B) NaCl a(C) Sulphur and sand(D) KNO3	nd sand and NaCl
	Space for rough work	

BIOLOGY

34. Match the above given experimental set-ups A and B with their following probable outcomes and choose the correct option.

(i) Water level in potato trough will remain the same.

(ii) Water level in potato trough will increase due to the movement of water from beaker to potato trough.

(iii) Water level in potato trough will decrease as water will move from potato trough to the beaker.

	NSAT – 2023			Class IX TO X
	(C) Cuboidal epithel (D) Connective tissu	ial tissue and connective and columnar epithel	re tissue ial tissue	
7.	Which of these optic	ons are not the function	of ribosomes?	
	(i) Protein synthesis			
	(ii) Enzyme synthes	İS		
	(iii) Hormone synthe	esis		
	(iv) Starch synthesis			
	(A) i and ii	(B) ii and iii	(C) iii and iv	(D) iv and i
8.	Which of the follow	ing is not covered by ar	ny membrane?	
	(A) Mitochondria	(B) Vacuole	(C) Lysosome	(D) Centrosome
9.	The undefined nucle	ar region of prokaryote	s is also known as	
	(A) Nucleus	(B) Nucleolus	(C) Nucleic acid	(D) Nucleoid
0.	Organelles other that	n nucleus containing D	NA is	
	(A) Endoplasmic ret	iculum	(B) Golgi apparatus	
	(C) Mitochondria		(D) Lysosomes	
	AS	PIRE • ASS	ESS • ACHIE	VE
		Space for re	ough work	
		Space for re	ough work	
		Space for re	ough work	
		Space for re	ough work	
		Space for re	ough work	
		Space for re	ough work	
		Space for re	ough work	