

NSAT-2024

CLASS – XI (Mathematics, Physics & Chemistry)

(Class XI Moving to XII-PCM)

NARAYANA SCHOLASTIC APTITUDE TEST (NSAT)

SAMPLE PAPER

Time: 1:00 Hr.

Maximum marks: 160

IMPORTANT INSTRUCTIONS:

- 1. The test Booklet consists of 40 questions. The maximum marks are 160.
- 2. There are five parts in the question paper of Mathematics (Q. No. 1 to 14), Physics (Q. No. 15 to 27) & Chemistry (Q. No. 28 to 40) having 40 questions. Each question is allotted +4 (four) marks for each correct response & -1 for each incorrect answer
- Mark only one correct answer out of four alternatives. 3.
- Use Blue/Black Ball Point Pen only for writing particulars/marking. 4.
- 5. Use of Calculator is not allowed.
- 6. Dark the circle in the space provided only.
- 7. Use of white fluid or any other material which damage the answer sheet, is not permissible on the **Answer Sheet.** ACDIDE . ACCECC . ACHIEVE

TO BE FILLED IN CAPITAL LETTERS

NAME OF THE STUDENT : _____

FATHER'S NAME :

CONTACT NUMBERS:_____SCHOOL NAME : _____

ROLL NO. :______TEST CENTRE : _____

I have read all the instructions and shall abide by them

I have verified all the information filled in by the Candidate

Signature of the Candidate

Signature of the Invigilator

NSAT - 2024

Class XI TO XII-PCM

EDUCATION IS INTEGRAL FOR GROWTH AND DEVELOPMENT

Education is integral for the growth and development of an individual. The expectation from an educational institute is always about making the society better for all and to bring out one's true Potential in the service of mankind.

At Narayana, we believe that a student's education is complete only when we are able to contribute towards his/her overall development besides imparting knowledge based and career oriented training.

With an aim to provide top of the league training to students to excel in every sphere of their lives, Narayana Group has been focusing on result oriented inputs.

Narayana's courses have been designed to cater to all the needs of the aspirants to help them excel in various competitive as well as Board examinations. Innovative strategies and techniques adopted in our centres keep our students abreast of the ever-changing pattern of top level Engineering/Medical Entrance Exams. As a result, Narayana's timetested learning formulae are percolating to far-flung corners of India to benefit students from all backgrounds.

"Footprints on the sands of time are not made by sitting down". Today we rededicate the last 4 decades of our success to your dreams. I wish all our students a very successful academic year ahead.

Dr. P. NARAYANA Founder, Narayana Group

(;)

(1)

(1:

(1)

	NSAT – 2024			Class XI TO XII-PCM	
		MA	THS		
1.	In how many ways 20 opposite seat of each) persons can be arrang person is empty	ged on 50 seats around a ta	able such that diametrically	
	(A) ${}^{24}C_{19}(19!)(2^{19})$	(B) ${}^{24}C_{19}(2^{19})$	(C) ${}^{25}C_{19}(19!)(2^{19})$	(D) None of these	
2.	The value of the expr	ession			
	$2\left(1+\frac{1}{\omega}\right)\left(1+\frac{1}{\omega^2}\right)+3$	$\left(2+\frac{1}{\omega}\right)\left(2+\frac{1}{\omega^2}\right)+4\left(\frac{1}{\omega^2}\right)$	$3 + \frac{1}{\omega} \left(3 + \frac{1}{\omega^2} \right) + \dots + (n + 1)$	$+1)\left(n+\frac{1}{\omega}\right)\left(n+\frac{1}{\omega^2}\right),$	
	where ω is an imaginary cube root of unity, is				
	(A) $\frac{n(n^2+2)}{3}$	(B) $\frac{n(n^2-2)}{3}$	(C) $\frac{n^2(n+1)^2 + 4n}{4}$	(D) None of these	
3.	If $ \mathbf{x} - 2 \ge 4$ then				
	(A) $x \in [-4,8]$	(B) $x \in [-5,8]$	(C) $x \in [-6,6]$	(D) None of these	
4.	The equation $\sqrt{x+1}$ -	$-\sqrt{x-1} = \sqrt{4x-1}$ has			
	(A) No solution		(B) One solution		
	(C) Two solutions		(D) More than two set	olutions	
5.	Find 50 th term of sequ	ience 2, 10, 20, 32, 46,	, 62		
	(A) 2740	(B) 2742	(C) 2744	(D) 2746	
6.	The number of real ro	pots of $\left(x+\frac{1}{x}\right)^3 + \left(x+\frac{1}{x}\right)^3$	$\frac{1}{10}$ is pritude to		
	(A) 0	$PI_{(B)2} \bullet^{x} ASS$	ESC A ACHIE	(D) 6	
7.	The number of ways in	n which four boys and f	Four girls can be seated arou	and a circular table so that no	
	two girls sit together is	3			
	(A) 16	(B) 3!4!	(C) 4!4!	(D) 7!	
8.	$n \in N$ then $\left(\frac{1+i}{\sqrt{2}}\right)^{\circ n}$ +	$-\left(\frac{1-i}{\sqrt{2}}\right)^{\circ n} =$			
	(A) 1	(B) 2	(C) 3	(D) 4	
9.	If $A = \{1, 3, 5, 7, 9, 11\}$	$\{1, 13, 15, 17\}, B = \{2, 4\}$	$, \ldots, 18$ and N is the ur	niversal set, then	
	$A' \cup \{(A \cup B) \cap B'\}$ is				
	(A) A	(B) N	(C) B	(D) None of these	

Space for rough work

NSAT - 2024

_	NSAT – 2024			Class XI TO XII-PCM	
20.	A body is moved along a straight line by an machine delivering constant power. The distance				
	moved by the boo	ly in time t is proportiona	l to:		
	(A) $t^{3/2}$	(B) $t^{1/2}$	(C) $t^{3/4}$	(D) t^2 .	
21.	Plank A moves o	n a horizontal surface wit	h an acceleration a. S	phere B rolls on the plank A	
	without slipping	with linear acceleration a_0	. Plank C does not sli	p- and moves on the sphere	
	parallel to the pla	ne. Find the acceleration (\mathbf{P}) $2a \pm a$	with which plank C n (C) 2a	noves: (D) $2(a \pm a)$	
22	(A) $a + a_0$	$(B) 2a + a_0$	$(C) 2a_0 - a$	(D) $2(a + a_0)$	
22.	A force $F = -K$	$y_l + x_j$ (where K is a pos	sitive constant) acts of	i a particle moving in xy plane.	
	Starting from the	origin, the particle is take	en along positive x-ax	is to the point $(a, 0)$ and then	
	parallel to y-axis $(\Lambda) = 2K_0^2$	(B) $2K_2^2$	al work done by the IC (C) Ka^2	$(D) = Ka^2$	
23	(A) -2Na Calculate the mo	(D) 2Na ment of inertia about an a	(C) Ka xis passing through p	(D) - Ka.	
23.	of semi circular r	ing of mass M and radius	R as shown in figure.		
			T		
			M, R		
		P	••••••••••••••••••••••••••••••••••••••		
	(A) MR^2	(B) $2MR^2$	(C) $MR^{2}/2$	(D) $3MR^{2}/2$	
24.	A ball is thrown	vertically upwards with ve	elocity of 20 m/s from	top of a building. The height of	
	building from wh	building from where ball is thrown is 25 m from the ground. How long will it be before the ball			
	hits the ground?	$\Gamma ake g = 10 \text{ m/s}^2.$	ESS ACT		
	(A) $t = 5s$	(B) $t = 10$	(C) $t = 15s$	(D) $t = 20s$	
25.	A heavy stone is	thrown from a cliff of hei	ght h with a speed v.	The stone will hit the ground	
	with maximum s	peed if it is thrown.			
	(A) vertically dov (C)	tically downward (B) vertically upward			
	(C) norizontally	a not donand on the initia	1 direction		
26	A car accelerates	on a horizontal road due	to the force exerted by	v	
	(A) the engine of	the car (B) the driver of	the car (C) the ear	th (D) the road.	
27.	The moment of in	hertia of a uniform semici	rcular wire of mass M	I and radius r about a line	
	perpendicular to	the plane of the wire throu	igh the centre is	2	
	(A) Mr^2	(B) $\frac{1}{2}$ Mr ²	(C) $\frac{1}{4}$ Mr ²	(D) $\frac{2}{5}$ Mr ² .	
		2	7	5	
	Snace for rough work				
	Space for rough work				

CHEMISTRY

28.	25 g of sample	of ferrous sulphate was	dissolved in dilute	e sulphuric acid and water and its
	volume was mad	ie up to 1 litre. 25 ml of th	is solution required $T_{\rm Eq} = 2 \int dt dt$	20 ml of N/10 KMnO ₄ solution for
	(Λ) 88 06 9/	(D) 00%	(C) 87.9/	(D) 01 %
20	$(A) \ \delta \delta.90 \ 70$ What is the energy	(D) 90 %	(C) 87 %	(D) 91 % orbit of L i^{2+} ion
29.	what is the align $8\pi^3$ ma ⁴	$\frac{8\pi^3}{ma^4}$	$64\pi^3 \text{ms}^4$	$9\pi^3 wa^4$
	(A) $\frac{\delta \pi me}{h^3} K^2$	(B) $\frac{8\pi}{9h^3}K^2$	$(C) \frac{64\pi me}{9h^3} K^2$	(D) $\frac{9\pi}{h^3} K^2$
30.	Which represent	impossible arrangement?		
	n	λ	m 👘	S
	(A) 3	2	-2	<u>+1/2</u>
	(B) 4	0	0	<u>+</u> 1/2
	(C) 3	2	-3	<u>+1/2</u>
	(D) 5	3	0	$\pm 1/2$
31.	Select the correc	t order of ionic reaction		
	(A) $O^{2^-} > S^{2^-} >$	$Se^{2-} > Te^{2-}$	(B) $S^{2-} > O^{2-}$	$->Se^{2-}>Te^{2-}$
	(C) $Te^{2-} > Se^{2-}$	$> S^{2-} > O^{2-}$	(D) $Se^{2-} > Te$	$e^{2^{-}} > O^{2^{-}} > S^{2^{-}}$
32.	3.0 moles of idea	al gas is heated at constant	pressure from 27°C	to 127°C then the work done
	during expansion			
	(A) – 2.494 KJ	(B) + 2.494 KJ	(C) – 10.5 KJ	(D) + 10.5 KJ
33. Ground state electronic configuration of nitrogen atom can be represented by				represented by
	(i) $\uparrow \downarrow$ $\uparrow \downarrow$	$\uparrow \uparrow \uparrow$	(ii) $\uparrow \downarrow$ $\uparrow \downarrow$	$ \uparrow \downarrow \uparrow $
	(iii) $\uparrow\downarrow$ $\uparrow\downarrow$	$ \uparrow \downarrow \downarrow $	(iv) $\uparrow \downarrow$ $\uparrow \downarrow$	$ \downarrow \downarrow \downarrow $
	(A) (i) only	(B) ii and iii	(C) iv only	(D) i and iv
34.	Difference betwee radius. The value	een nth and (n + 1) th Bohr' e of n	's radius of H – ator	n is equal to its $(n-1)^{th}$ Bohr's
	(A) 3	(B) 4	(C) 5	(D) 6
35.	Among the follo	wing, the linear species is:		
	(A) NO_2	(B) Cl_2O	(C) O ₃	(D) N_3 .
		Space for	rough work	
			0	

	NSAT – 2024			Class XI TO XII-PCM
36.	The standard molar 156 and + 49 KJ/m 25°C is – 119 KJ/m (A) 152 KJ/mol	enthalpies for formatio ol respectively. The star ol. The resonance energ (B) – 240 KJ/mol	on of cyclohexane (λ) and ndary enthalpy of hydroge gy of benzene is (C) - 152 KJ/mol	benzene (λ) at 25°C are - nation of cyclohexene (λ) at (D) 240 KJ/mol
37.	The number of mol oxalate in acidic me	es of KMnO ₄ that will dedium is	be needed to react complete	tely with one mole of ferrous
	(A) 2/5	(B) 3/5	(C) 4/5	(D) 1
38.	The molecule which	h has pyramidal shape i	S 2	
• •	(A) PCl ₃	$(B) SO_3$	$(C) CO_3^{2^2}$	$(D) NO_3$
39.	In which of the foll	owing pairs of molecule	es/ions both the species are	e not likely to exist?
	(A) H_2^+, He_2^2	(B) H_2^-, He_2^{2-}	(C) H_2^{2+}, He_2	(D) H_2^-, He_2^{2+}
40.	The correct order o	f increasing C—O bond	l length of CO ₂ , CO ₃ ²⁻ , CO) is
	(A) $CO_3^{2-} < CO_2 <$	CO	(B) $CO_2 < CO_3^{2-} < CO_3^{2-}$	CO
	(C) $CO < CO_{2}^{2-} < CO_{2}^{2-}$	<i>CO</i> ₂	(D) $CO < CO_2 < CO_2$	D_{2}^{2-}
	(0) 00 1003 10			.3
		RAYANA SCHOL	ASTIC APTITUDE T	
	ASPIRE • ASSESS • ACHIEVE			
Space for rough work				